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The profound generality of transfer processes is
evident in the physical analogies which have been
successfully included in a number of theories of heat
transfer [1-11]. The basic content of these analogies,
which have been sufficiently described in specific
investigations (rarefied media [4-10], turbulent trans-
fer [11]) consists in a generalization of the transfer
process model. The differences in principle in the
nature of the heat transfer agent (photons or particles)
turas out not to be very important. The basis of the
modelling is the kinetic Boltzmann equation, which,
in this simplified interpretation [4], is analogous to
the equation of radiative energy transfer.

When applied to the particular case of a steady
field in a nonscattering homogeneous medium, the
kinetic Boltzmann equation may be written as follows:

df (M, 8) ! ds =
=k (M, §) (— (M, §) + e, (M, $}. (1)

Here (M, S) has the meaning of a specific inten-
sity of "radiation™ of photons (or neutrons) or of par-
ticles (molecules, and their combinations), depending
on the nature of the transfer processes, at the point
M and in the direction S; when the energy of the ele-
mentary carriers and the velocity of their propagation
is taken into account, a direct relation is established
between f (M, Sy} and the distribtuion function [12];
£y(M, 8) is an equilibrium function representing emis-
sion and production of photons or particles in an ele-
ment of volume at the point M in direction S, and
associated with the elementary interaction processes;
k(M, S) is the attenuation (extinction) coefficient,
associated with the interaction, and including the
scattering and absorption coefficients, in general.

The transfer equation (1), taking account of the
boundary couditions, may be transformed, by a formal
integration, into an equation which is a solution with
respect to f(M, S):
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Here f (M, S¢) is the boundary value of the spe~
cific intensity, and h(M, S) is the optical density of
the medium, or the number of mean free paths of the
carrier fitting into the ray S, — S.

The transfer processes are characterised by flux
densities which are given various physical interpre-
tations, depending on the nature of the investigation.
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The deunsity of the resultant energy transfer across
an imaginary plane in space is given by the relation.
E(M,S8)==x S FV, $)QM, 8, \ydFy. (3)

4an

Here Q(M, S, N)dFy is the spatial orientation func-
tion for the elementary transfer agents at fixed M and
current N points of contact with respect to the chosen
direction S.

Examination of one-dimensional transfer processes
reduces to investigation of the energy equation expres-
sing the resultant volume transfer. From analogy with
the expression for the resultant heat transfer in a
plane layer of a gray, nonscattering medium (the
walls emit diffusely) [13], the above equation may be
written in the form

f 1 dE@)
W= e =

= heg (h) — 201 (B) [ (Bn) — 204 (B) [ (hy) —

ls

-23 €0 (§) G (h, £y dG . (4)

Here G(h,¢) is a functional describing the volume
transfer, including the effects of reflection at the
boundaries; oj(h) f(hy) is the emission of the boundary
surfaces, attenuated by the intervening medium (i =
=1,2), and by reflections at the boundaries on the
way to h.

For a given value of nth), Eq. (4) allows us to
determine the equilibrium distribution function gy{)
over the layer, and therefore, the corresponding
distributions of temperature, velocity, aad so on.
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The boundary influence functions ¢j(h) and the
functional G(h, ) are determined from the relations
[13]

Ka(h) + 2(1 — As) Ko (ho) Ko (o — h)

6y {h) = A; T—4(0—A) (I — A K& (he)

Ka(hg— h) 42 (1 — Ay) K3 (ho) Kz {h)
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Gk, §) =Ka| h— T+ 201 () 252 Ka (D) +
+ 203 (W) * 5 Ka (ho— ),
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Here Aj are the generalized accommodation co~
efficients for the boundary surfaces [12] (either the
emittance or the absorptance during emission).

If a solenoidal field = 0 for the carriers is being
analyzed, the problem of determining the distribution
of functions gy(h) transforms to solution of the integral
equation

hy

o) =5a® + 5\ GR DQ L (6)

0

written with respect to the function

_ &alh)—[ (k1) - Eo(h)—Eo,
P = T =F ) = Eop—Fon

which is a dimensionless analog of the equilibrium
function g;(h) (equilibrium emission, temperature,
velocity).

It is therefore possible to describe transfer processes in a plane
layer due to boundary perturbations (the walls have different tem~
peratures or different velocities of motion). The generalized ac-
commodation coefficient is the parameter which characterizes the
perturbations. With reference to the case oj(h) =1, Eq. (6) was
used earlier in analyzing internal friction in rarefied gases [1], and
then, later, in investigation of Couette flow in a rarefied medium
[10L

If the boundary conditions are symmetrical (f(h;) =
= f(hy), A} = A,), then (4) transforms into the integral
equation

hy
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Attention should be drawn to the absence in (7) of free terms
describing the influence of the boundaries in explicit form, This is
associated with the fact that the only source of perturbations in this
case is uniformly distributed in this case throughout the entire medium.

Equation (7) allows us to analyze the temperature distribution in
a nonconducting, emitring medium, containing uniformly distrib-
uted heat sources, It evidently does not allow us to establish the
distribution of velocity of flow of a rarefied medium moving in 2
plane channel with slip,

The dynamic pressure head in the channel® plays the role of
sources of perturbations, It is evident that the distribution functions
¢ (h) or (8¢(h)) undergo a break in continuity in the regions close
to the walls, regions whose dimensions are determined by the mole-
cular or optical thicknesses.

The inclusion of appreciable asymmefry into the
emission characteristics of the boundaries (A, =1,

Ay = 1) leads to transformation of the influence func-

tion G(h, ) in (7) to the form
Gh, §) =K, |h—0{| +2RK, (W) K, () (8)

This implies a corresponding asymmetry in the
distribution of ¢(h). A special case of asymmetry
inside one of the boundary surfaces is an absolute
sink {(f(hy) =0, A, =1.0).

*t is clear that (7) also describes the distribution
of velocity in the turbulent core of a plane free jet,
inside which the pressure, which is the source of
perturbations, remains constant,



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 45

Then (4) takes the form
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Equation {9) describes processes of heat transfer by radiation in a
plane layer with heat generation, one of whose surfaces is absolutely
black is at a temperature of absolute zero, The same equation
evidently describes the distribution of temperature and velocity in a
layer of a rarefied stream flowing over a flat plate with slip,

It may be seen that the processes examined above
are described by a Fredholm integral equation of the
second kind, which, in general, may be written as:

ho
00 =ot) +4\ G De@dL. (10

0

The kernel G(h,z) of the integral equation has a
peculiarify as ¢ —h in that the value of the exponential
integral K;|h — ¢ | contained in it has a break in con-
tinuity of logarithmic character. In general, all the
Fredholm theorems [15] are valid for a kernel of this
type.

However, the specific form (10) associated with
numerical solution gives a large error. It is expe~
dient to eliminate the singular point of the functional
region G(h ~ ) by writing (10) in the form

hy
P k) =BR)s(h) + B(h)S G Hle@®)—eBIdE

By = (2(1—+ S G0 AaL)) . (11)
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In the region of small values of the influence func-
tion G(h,¢), which corresponds to small optical
depth or large mean free path, the role of the integral
in the functional equation (11), which expresses the
volume interaction, is negligible, and the solution (11)
may be represented by the simplified relation

P ~BMo®m. (12)

The solution of (11) relating to the specific cases of investigation
of radiative heat transfer may be performed according to the usual
iteration scheme when there is a discrete representation of the interval
(0, ho) in the Gauss technique (10 points), bringing in Newton's meth-
od. The number of iterations, as a rule, does not exceed two, (All
the computations described here were performed on the 20 VTs SO AN
SS8R electronic computer. )

1, A plame layer of gray nonscattering medium (without heat
generation) with asymmetric boundary conditions, The results of
solution of the integral equation (6) are shown in Fig, 1, and are in
good agreement with the results of [16]; they show the effect of the
optical properties of the boundary surfaces Aj, and also of the optical
thickness hy of the medium on the distribution of the dimensionless
equilibrium emission ¢(¢) in the layer. The case analyzed here has
appreciably different values A; = 0.7 and A, = 0, 2 with reference to
the several characteristic values of the optical thickness hy of the

medium, The solution of (6) may be approximated well by the linear
equation

QM) =90+ (@) —@ D) &S by (13

where ©(0) and ¢(hg) (the values of ¢(h) in the region near the walls)
are determined comparatively simply [13] from simultaneous examina~
tion of (8) and (12). In the special case when the boundary surfaces are
absolutely black

P(0) = (Mg — Ky (ko)) (1 -+ ko (1 — Ky (hg)) — 285 (he)) 77
@) =1—0(0). (14)

The results of the solution with (13) included are in satisfactory
agreement with those of the strict formulation of the problem (Fig. 1)
examined earlier with reference to the case A; = 0,7 and A, =0,2
(Fig. 3 of [13D).

This agreement is evidence that the linear approximation to the
rigorous solution is applicable even in the general case when the
boundary conditions are asymmetric as regards to optical properties
of the surfaces, The results obtained have an immediate relevance
to investigations of the distribution of velocities and temperatures in
a plane layer of rarefied gas formed by two infinite planes, of which
one (the second) is in motion (Couette flow) [1, 101

In addition, being very graphic in a physical sense, the results
give appropriate information in constructing approximate solutions,

In weakly absorbing media (hy < 0, 5) we may use relation (12),
which takes the form, with reference to the case under analysis,

P (h)=0a (k) {Kz(h)—l-Ka( — k) —
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For the case with absolutely black boundary surfaces
@ (R) = Ky (hg — 1) (Ky (B) + Ko (hg — B} . (16)

Calculations of the distribution ¢ (h) by formula (15) withreference
to the case A;=0.7, A;=0,2, hy = 0.2 gave very good results,

2. Plane layer of medium with uniformly distributed heat sources
(symmetric boundary conditions).* Solution of (7), as represented in
(10), was carried out for a large range of values of hg and R =1 - A,
The corresponding numerical results are shown in Fig. 2, which shows
the distribution of values of equilibrium radiation

Eo (L) — Eox
¢e= Eo.z" Eo.1
as a function of thickness of the layer of gray medium of different
optical thickness, when the boundary surfaces reflect radiation dif-
fusely with different intensities (@) R =0, (b) R = 0. 6. Point 1 was
obtained from (17), and point 2 from (23), It may be seen that with
an increase of hg the degree of nonequilibrium in the values of ¢(h)
first increases, and then decreases again. The increase of the reflec-
tance Rin the above sense always has a stabilizing influence, Similar
results were obtained in [17] by the Monte Carlo method,

The solution of the integral equation (7) may be
approximated well by a parabola of the form

LAY (17)

_ @ (o o) — 9 (0)
@(h) = @(0) + 4 . R(1— )

*The heat sources {or sinks) indicate that there
is some heat generation per unit "optical volume™®
n(h) = dE(h)/ dh.
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Here ¢(0) and ¢(hy/2) are dimensionless values
of equilibrium radiation in the near-wall and near-
axis regions, respectively, of the plane layer.
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The values of ¢(0) and ¢(hy/2) are determined
from simultaneous examination of (7) and (17). In
general, the respective computation equations are
awkward, and we therefore restrict attention to the
special case of absolutely black boundary surfaces.

To determine ¢(0) we shall start from solution of
the integral equation (7), which allows us to obtain
the rigorous relation

lg
90 =5+ 1\ Tiwdh,

0

lig
Ty(h) = Ky (h) +- 1781\:11/;— LTi@dg.  (18)

0

Using the approximation

he

“ 1 — Ks(h
Sll(h)dhzho-,-/;_—;s((h—"o’) (19)
0

obtained earlier in [13], we have

(g g A= Fah)
¢ (O) - \\1 - mo) J° (20)

Using the approximation (17) in the integral equa-

The results of the calculations carried out using (17), (21), and
(22) are in good agreement with the corresponding values presented
in Fig. 2a in the rigorous examination,

with increase of the reflectance of the boundaries (Fig. 2b), the
error in the calculation increases, but, however, does not exceed
7% for R=10,6 and hy = 2,0,

The approximate solution (12), which exists for optically weak
media (b < 0.5), may be written in the form

@ (h) == {Ky (h) + Ko (hg — b) —
— (1—2 Kq (h)) (04 (B) + 05 ()} " (22)

The results of calculations e;ccording to (22) are shown in Fig, 2. It
may be seen that the error in calculation for hy = 0. 5 does not exceed
10%, even in the general case of a gray surfaces,

3. A plane layer of a medium with uniformly distributed heat
sources (asymmetric case), a) One of the boundary surfaces is abso-
lutely black (4, = 1.0).

The results of solution of the integral equation (7), taking into
account (8), as shown in Fig. 3, are evidence of the important in-
fluence of asymmetry of optical properties on the distribution of di-
mensionless equilibrium radiation; with increase in the optical density
hyg this influence is especially noticeable for the reason that the dis-
tribution

Eo () — Eyq

7 %)

Q)=
over the thickness of the layer turns out here to be connected with the
specific nature of the boundary conditions to an incomparably great
extent,

with decrease of Ry = 1 ~ A, the distribution of ,#(§) becomes
more symmetrical, and in the limit, when R; =0, symmetry of the
distribution of ¢(%) is restored (the special case of solution of (7),
shown in Fig, 2a).

In optically thin layers (hy< 0.8), the solution of (7) is approxi-
mated satisfactorily by (12), which may be written in the form

@ () = {K; (B) +
+ Ky (g — B) ——}311(2 (h) (1—2 Ky (h))y™ " . (24)

The results of calculations according to (24) are shown in Fig. 3
for hp = 0.5 and R; =0, 6.

b) One of the boundary surfaces is assumed to be at the temperature
absolute zero (Eg.2 =0, A,=1), The results of numerical solution of
the integral equation (9) for the case ¢; = 1,0 for a wide range of R,
and hy are shown in Fig. 4 in the form

tion (7) (for R = 0), we have Eo(Q) — B,
(P(Q)——%:F(C):—“—l/—zn—
@ (Y3 hy) = @ (0)+ (Vy h? (s — @ (0) K, (g ho)) %
1 InFig. 4 curves 1, 2, 3, 4, and 5 correspond to the values Ry =
X (*g — ol g (Moho)—2K 4 (Moho)) (21) =0, 0.2, 0.4, 0.6, 0.8.
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From comparison of the results of calculations shown in Fig, 4a
with the analogous results in Fig, 3, it is very evident that there is
a decrease in the general level of ¢(£), due to the peculiar "lumi-
nescence” on the part of the wall at absolute zero.

For a specific ratio of the chosen parameters as regards optical
density of the layer hy, and also for dimensionless equilibrium radia-
tion of the actual wall ¢, = Ey, 1/27, the dimensionless equilibrium
radiation ¢({) increase with increase of the reflectance of the wall
R (Fig, 4a for hy = 0, §), This is due to the dominant role of the
emittance of the wall in the distribution of ¢(£). It is clear that with
increase in the optical density he, the role becomes weaker, and to an
increasing extent the internal processes begin to show up, in a medium
containing a uniform distribution of heat sources (Fig, 4b).

In optically thin media (hy< 0.5), we may use the
approximate expression (12), which in this case may
be written as

o) =0+ =R K, (%) 1) (K, (B) x

x(1 — Ry (1—2 Ky (b)) - K, (hy — R))™" . (25)

Calculations according to (25) relative to the case
hy=0.5, Ry =0.6, and ¢; = 1.0 are shown in Fig. 4a.
The maximum error of calculations of this kind also
does not exceed 10%. For this reason the approxima-
tion (12) and its special forms represented by (15),
(23), (24), and (25) should be used in the range of
optical thickness confined to h;< 0. 5.

A more effective formula, in the sense of wide
range of optical density, is represented by the ap-
proximate solutions (13) and (17), based as they are
on additional knowledge of the expected nature of the
distribution ¢{¢). The generalized physical analogies
examined approximately in this paper may be very
useful in this sense.

The topics touched upon are examples of the sim-
plest cases in the approximate development of the
general theory of transfer.
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